
DTC P2759 Torque Converter Clutch Pressure Control
Solenoid Control Circuit Electrical (Shift Solenoid Valve SLU)

DESCRIPTION

The current flow to the solenoid is controlled by the duty ratio* of the ECM output signal. The higher the duty ratio becomes, the higher the lock-up hydraulic pressure becomes during the lock-up operation.

*: The duty ratio is the ratio of the continuity to non-continuity in one cycle.

For example, if A is the period of continuity in one cycle, and B is the period of non-continuity, then Duty Ratio = $A/(A+B) \times 100(\%)$.

DTC No.	DTC Detection Conditions	Trouble Areas
	Open or short is detected in shift solenoid valve SLU circuit for 1 second or more while driving (1-trip detection logic)	 Open or short in shift solenoid valve SLU circuit Shift solenoid valve SLU ECM

MONITOR DESCRIPTION

When an open or short is detected in the shift solenoid valve (SLU) circuit, the ECM determines that there is a malfunction. The ECM turns on the MIL and stores this DTC.

MONITOR STRATEGY

Related DTCs	P2759: Shift solenoid valve SLU/Range check
Required sensors/Components	Shift solenoid valve SLU
Frequency of operation	Continuous
Duration	Condition (A) and (B): 1 second
MIL operation	Immediate
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The following conditions are common to Condition (A) and (B).

The monitor will run whenever the following DTCs are not present.	None
Ignition switch	ON
Starter	OFF

Condition (A)

	Solenoid current cut status	Not cut
Ī	Battery voltage	11 V or more

Condition (B)

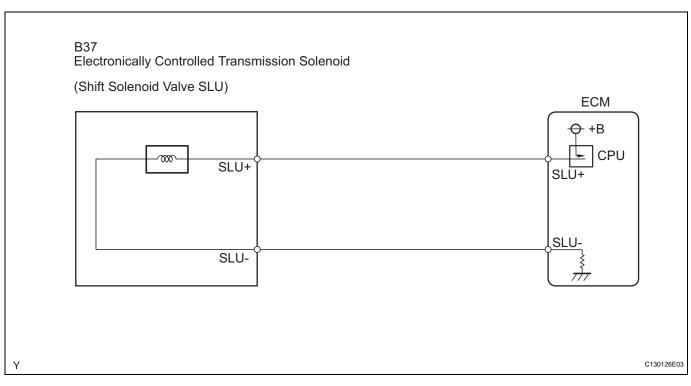
Battery voltage	8 V or more
-----------------	-------------

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met: Condition (A) or (B)

Condition (A)

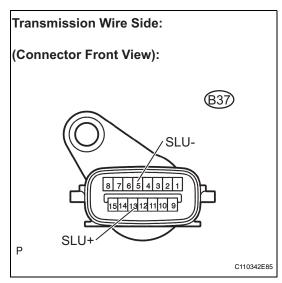
Solenoid status (SLU) from Hybrid IC Fail	
---	--


Condition (B)

Hybrid IC status	Fail
------------------	------

COMPONENT OPERATING RANGE

Shift solenoid valve SLU	Resistance: 5.0 to 5.6 Ω at 20°C (68°F)
--------------------------	---


WIRING DIAGRAM

AT

INSPECTION PROCEDURE

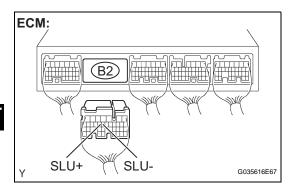
1 INSPECT TRANSMISSION WIRE (SLU)

- (a) Disconnect the transmission wire connector from the transmission.
- (b) Measure the resistance.

Standard resistance

Tester Connection	Specified Condition
13 (SLU+) - 5 (SLU-)	5.0 to 5.6 Ω at 20°C (68°F)

(c) Measure the resistance.


Standard resistance (Check for short)

Tester Connection	Specified Condition
13 (SLU+) - Body ground	10 kΩ or higher
5 (SLU-) - Body ground	10 k Ω or higher

NG Go to step 3

2 CHECK HARNESS AND CONNECTOR (TRANSMISSION WIRE - ECM)

- (a) Connect the transmission wire connector to the transmission.
- (b) Disconnect the ECM connector.
- (c) Measure the resistance.

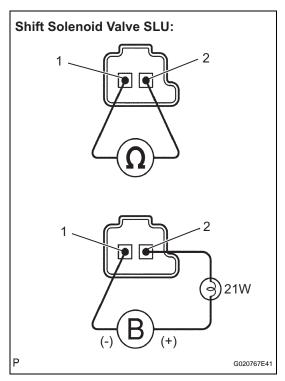
Standard resistance

Tester Connection	Specified Condition
B2-15 (SLU+) - B2-14 (SLU-)	5.0 to 5.6 Ω at 20°C (68°F)

(d) Measure the resistance.

Standard resistance (Check for short)

Tester Connection	Specified Condition
B2-15 (SLU+) - Body ground	10 kΩ or higher
B2-14 (SLU-) - Body ground	10 k Ω or higher



REPAIR OR REPLACE HARNESS OR CONNECTOR

REPLACE ECM

3 INSPECT SHIFT SOLENOID VALVE SLU

- (a) Remove the shift solenoid valve SLU.
- (b) Measure the resistance.

Standard resistance

Tester Connection	Specified Condition
1 - 2	5.0 to 5.6 Ω at 20°C (68°F)

(c) Connect the positive (+) lead with a 21 W bulb to terminal 2 and the negative (-) lead to terminal 1 of the solenoid valve connector, then check the movement of the valve.

OK:

The solenoid makes operating sounds.

REPLACE SHIFT SOLENOID VALVE SLU

ОК

REPAIR OR REPLACE TRANSMISSION WIRE

AT